| Region | Condition | Description |
|---|---|---|
| Cutoff (OFF) | $V_{gs} < V_t$ | No channel is formed |
| Linear (Triode) | $V_{gs} > V_t$ and $V_{ds} < V_{dsat}$ | Channel is formed, acts like a voltage controlled resistor |
| Saturation | $V_{gs}>V_t$ and $V_{ds} ≥ V_{dsat}$ | Channel is pinched off near the drain, acts like voltage-controlled current source |
Saturation voltage: boundary between linear and saturation regions: $V_{dsat} = V_{GT} = V_{gs} - V_t$
Oxide capacitance per unit area
$$ C_{ox} = \frac{\kappa_{ox} \epsilon_0}{t_{ox}} $$
Channel charge
$$ Q_{channel} = C_g \cdot (V_{gs}- V_t) = C_{ox} WL (V_{gs}-V_t) $$
Transconductance Parameter
$$ \beta = \mu C_{ox} \frac{W}{L} $$
$$ I_{ds} = \begin{cases} 0 & V_{gs} < V_t \quad \text{(Cutoff)} \\ \beta \left( V_{GT} - \frac{V_{ds}}{2} \right) V_{ds} & V_{ds} < V_{dsat} \quad \text{(Linear)} \\ \frac{\beta}{2} V_{GT}^{2} & V_{ds} \geq V_{dsat} \quad \text{(Saturation)}\end{cases} $$
Same equations as above apply except for the following: