Aaron Curtis- good TA
While $x$ might be complicated, maybe we can express $x$ either approximately or exactly as a weighted sum of many simple basis (building block signals)
Assume that $x$ is real-valued, even, and periodic with fundamental period $T_0$
$$ \phi_0(t) = \frac{1}{2}, \quad \phi_1(t) = \cos(\omega_0 t), \quad \phi_2(t) = \cos(2\omega_0 t), \ldots $$
We thereform try to approximate $x$ as:
$$ \hat{x}(t) = \frac{a_0}{2} + \sum_{\ell=1}^{\infty} a_\ell \cos(\ell \omega_0 t), \quad a_0, a_1, \ldots \text{ are real constants} $$
To find that coefficient $a_0$, you integrate $x(t)$ over one period, and due to the orthogonality property of cosine, the integrals of the cosine terms go to 0:
$$ a_0 = \frac{2}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x(t) \, dt $$
To find the coefficients $a_k$ for $k≥1$, multiply both sides of the Fourier series by $\cos (k \omega _0 t)$ and integrate over one period
$$ a_k = \frac{2}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x(t) \cos(k\omega_0 t) \, dt, \quad \text{for } k \geq 1 $$
Orthogonality property: when the $\cos (k \omega _0 t)$ and $\cos (l \omega _0 t)$ is integrated over one period, the result is zero if $k≠l$ and $\frac{T_0}{2}$ if $k=l$
$$ \frac{2}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \cos(k\omega_0 t) \cos(\ell\omega_0 t) \, dt = \begin{cases} 0 & \text{if } k \neq \ell \\1 & \text{if } k = \ell \end{cases} $$
Calculation of $a_k$ for $k≥1$, intergating the product of the signal $x(t)$ and the cosine term $\cos (k \omega _0 t)$ over one period
$$ \frac{2}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x(t) \cos(k\omega_0 t) \, dt = \sum_{\ell=1}^{\infty} a_\ell \frac{2}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \cos(k\omega_0 t) \cos(\ell\omega_0 t) \, dt = a_k $$
Theorem 3.1: If $x$ is a real-values, even, and periodic CT signal with fundamental period $T_0$, then we can represent $x$ via the cosine Fourier series:
Cosine Fourier series representation for a real-valued, even, and periodic CT signal
$$ x(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(k\omega_0 t), \quad \omega_0 = \frac{2\pi}{T_0} $$
Calculation of coefficients $a_k$
$$ a_k = \frac{2}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x(t) \cos(k\omega_0 t) \, dt, \quad k \in \{0, 1, 2, \ldots\}. $$
For $T_0 >0$ and $0< \tau ≤ T_0$, consider:
$$ x_{\text{fin}}(t) = \begin{cases}1 & \text{if } -\frac{T_0}{2} \leq t \leq \frac{T_0}{2} \\0 & \text{otherwise}\end{cases} $$