<aside> 🐳 We can’t use Fourier series on aperiodic signals

</aside>

Continuous-Time Fourier Transform (CTFT)

CTFT takes a continuous time signal $x(t)$ and transforms it into a complex-valued function $X(j \omega)$, which represents the signal’s frequency spectrum

$$ X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt. $$

Inverse CTFT takes the complex-valued function $X(j \omega)$ and reconstructs the original time-domain signal $x(t)$

$$ x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega)e^{j\omega t} d\omega. $$

Gaussian distribution

CTFT of a Gaussian of width $\sigma$ is a Gaussian of width $\frac{1}{\omega}$

Existence of the CTFT

If $x$ has finite energy, then:

  1. $X$ exists and has finite energy

  2. Signal and its spectrum satisfy Parseval’s relation

    $$ \int _{- \infty} ^{\infty} |x(t)|^2 \text{dt} = \frac{1}{2\pi} \int _{- \infty} ^{\infty} |X(j \omega)|^2 d \omega $$

Properties of CTFT

Untitled

Discrete-Time Fourier Transform (DTFT)

For a DT signal $x$ defined pointwise by the following, we call $X$ the Fourier transform or spectrum of $x$

$$ X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} $$