19.5 Residue Theorem

Practice Problems: 1, 2, 4, 5, 10, 11, 13, 14, 17, 20, 24, 25, 27, 29, 31.

<aside> 🐝 The residue of a function $f(z)$ at an isolated singularity $z_0$ is the coefficient of $a_{-1}$ in the Laurent series expansion.

</aside>

Classification of Singularities by Residues

Computing Residues

Cauchy’s Residue Theorem

If you integrate $f(z)$ around a closed contour $C$ that encloses singularities $z_1, z_2, \dots , z_n$, the integral is $2 \pi i$ times the sum of the residues at those singularities:

$$ \oint_C f(z) dz = 2\pi i \sum_{k=1}^{n} \text{Res}(f(z), z_k) $$

19.6 Evaluation of Real Integrals

Practice Problems: 1, 26, 28, 31, 33, 34, 35

Integrals of the Form $\int_{0}^{2\pi} F(\cos \theta, \sin \theta) d\theta$

We can convert these to complex integrals over the unit circle

$$ \int_{0}^{2\pi} F(\cos \theta, \sin \theta) d\theta = \oint_{C} F\left(\frac{1}{2}(z + z^{-1}), \frac{1}{2i}(z - z^{-1})\right) \frac{dz}{iz} $$

Improper Integrals of the Form $\int_{-\infty}^{\infty} f(x) dx$