Practice Problems: 1, 2, 4, 5, 10, 11, 13, 14, 17, 20, 24, 25, 27, 29, 31.
<aside> 🐝 The residue of a function $f(z)$ at an isolated singularity $z_0$ is the coefficient of $a_{-1}$ in the Laurent series expansion.
</aside>
Simple Pole
$$ \text{Res}(f(z), z_0) = \lim_{z \to z_0} (z - z_0)f(z) $$
Pole of Order n
$$ \text{Res}(f(z), z_0) = \frac{1}{(n - 1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}}[(z - z_0)^nf(z)] $$
Alternative Method for Simple Pole: If $f(z) = \frac{g(z)}{h(z)}$ where $g(z_0) ≠ 0$ and $h(z_0) = 0$ but $h’(z_0)≠0$:
$$ \text{Res}(f(z), z_0) = \frac{g(z_0)}{h'(z_0)} $$
If you integrate $f(z)$ around a closed contour $C$ that encloses singularities $z_1, z_2, \dots , z_n$, the integral is $2 \pi i$ times the sum of the residues at those singularities:
$$ \oint_C f(z) dz = 2\pi i \sum_{k=1}^{n} \text{Res}(f(z), z_k) $$
Practice Problems: 1, 26, 28, 31, 33, 34, 35
We can convert these to complex integrals over the unit circle
$$ \int_{0}^{2\pi} F(\cos \theta, \sin \theta) d\theta = \oint_{C} F\left(\frac{1}{2}(z + z^{-1}), \frac{1}{2i}(z - z^{-1})\right) \frac{dz}{iz} $$