<aside> ⛔ Given a function $f(x)$ and a fixed point $a$, we say that $f$ approaches the limit $l$ near $a$, provided we can make $f(x)$ ****as close to $l$ as we like by taking $x$ sufficiently close to, but not equal to, $a$, and write:
</aside>
Conditions for a limit to exist:
$lim_{x \to a} f(x) = L$ and $lim_{x \to a} g(x) = M$, $lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M}$
$lim_{x \to a} f(x) + g(x) = L+M$
$lim_{x \to a} f(x) = L$ and $lim_{x \to a} g(x) = M$, then $lim_{x \to a} f(x) g(x) = LM$
$lim_{x \to a^+} \frac{1}{x-a}$ does not exist, with $lim_{x \to a^+} \frac{1}{x-a} \to + \infty$
Similarily,
$lim_{x \to a^-} \frac{1}{x-a}$ does not exist, with $lim_{x \to a^-} \frac{1}{x-a} \to - \infty$