Consider the plane curve defined by the parametric equations $x=x(t)$ and $y=y(t)$, then $\frac{dy}{dx} = \frac{y’(t)}{x’(t)}$
Area under a curve where $a≤t≤b$ is given by $A = \int _a ^b y(t)x’(t)dt$
$S = 2\pi \int _a ^b y(t) \sqrt{x’(t)^2+y’(t)^2}dt$