Consists of three sets of voltages or currents, each 120 degrees out of phase with the others
$3I_L^2R_L$ rather than $6I_L^2R_L$
voltages in each phase.
Balanced phase currents:
$$ \overline{I_A} = I_L \angle \theta_{A} \newline \overline{I_B} = I_L \angle (\theta_{A} - 120^\circ) \newline \overline{I_C} = I_L \angle (\theta_{A} + 120^\circ)
$$
KCL at neutral point
$$ \overline{I_N} = - (\overline{I_A} + \overline{I_B} + \overline{I_C}) = 0 $$
The second benefit of 3-phase systems is the ability to generate a smoothly rotating magnetic field, which is crucial for the operation of AC motors. The rotating field results from the 120-degree phase shift between each phase, allowing the magnetic field to rotate consistently within the motor
The switching waveforms for each phase (A, B, C) are generated by usingĀ Sinusoidal Pulse Width Modulation (SPWM)
SPWM (Sinusoidal Pulse Width Modulation):
Modulating signals for each phase
$$ m_A(t) = k \cos(\omega_{out} t + \theta_A) \newline m_B(t) = k \cos(\omega_{out} t + \theta_A - 120^\circ) \newline m_C(t) = k \cos(\omega_{out} t + \theta_A + 120^\circ)
$$
Average phase voltages
$$ km $$
Line to line voltage
$$ \langle V_{AB}(t) \rangle = \langle V_{AN}(t) \rangle - \langle V_{BN}(t) \rangle $$
Balanced line to line voltage
$$ \langle V_{AB}(t) \rangle = \frac{k V_{in} \sqrt{3}}{2} \cos(\omega_{out} t + \theta_A + 30^\circ) \newline \langle V_{BC}(t) \rangle = \frac{k V_{in} \sqrt{3}}{2} \cos(\omega_{out} t + \theta_A + 30^\circ - 120^\circ) \newline \langle V_{CA}(t) \rangle = \frac{k V_{in} \sqrt{3}}{2} \cos(\omega_{out} t + \theta_A + 30^\circ + 120^\circ) \newline \text{Final line-to-line voltage in polar form: } \overline{V_{AB}} = \frac{k V_{in}}{2 \sqrt{2}} \left( \sqrt{3} \angle 30^\circ \right)
$$