Chapter 5.3, 5.5, and 5.6

Maxwell’s Magnetostatic Equations

Gauss’ Law

$$ \nabla \cdot B = 0, \oint _S B \cdot ds = 0 $$

Ampere’s Law

Electrostatic field is conservative, its line integral along a closed contour always vanishes

$$ \nabla \times H = J, \oint _C H \cdot dl = I \newline \int _s(\nabla \times H) \cdot ds = \int _s J \cdot ds $$

Magnetic Field of a Long Wire

Magnetic Field inside a Toroidal Coil

Magnetic Field of an Infinite Current Sheet

Magnetic Properties of Materials

Electron Orbital and Spin Magnetic Moments

$$ m_s = -\frac{eh}{2m_e} $$

Magnetic Permeability

$$ \mu = \mu _0 (1+ \chi _m) \text{ H/m} \newline \text{or,} \newline \mu _r = \frac{\mu}{\mu _0} = 1 + \chi _m $$

Magnetic Boundary Conditions