Oblique Incidences Continued

image.png

image.png

Brewster and Critical Angle

Brewster Angle

Is there such an angle $\theta_i$ such that $\Gamma_\parallel(\theta_i) = 0$ and $\Gamma_\perp(\theta_i) = 0$?

Critical Angle

Looking at Snell’s Law $\frac{n_1}{n_2}\sin\theta_i = \sin\theta_t$, we can see that if $n_1 > n_2$, there is a critical angle $\theta _c$ in which $\frac{n_1}{n_2}\sin\theta_c = 1$. In this case, we have $\sin\theta_t = 1 \ \rightarrow \ \theta_t = 90^\circ$

$$ e^{-jk_0n_1\sin\theta_ix}e^{-k_0n_2\underbrace{\sqrt{(\frac{n_1}{n_2}\sin\theta_i)^2-1}}_\text{attenuation rate} \ z} $$

Important: this means exponential attenuation does not imply lossy media!

Poynting Vector