CCM/DCM Boundary

image.png

Power in Periodic Circuits

Voltage and Current Representation

$$ v(t) = V_0 + \sum_{k=1}^{\infty} \sqrt{2} V_k \cos(k\omega t + \phi_k) \newline i(t) = I_0 + \sum_{m=1}^{\infty} \sqrt{2} I_m \cos(m\omega t + \theta_m)

$$

Power as a Fourier Series

RMS Voltage and Current

$$ V_{rms} = \sqrt{ \frac{1}{T} \int_0^T v(t)^2 dt } = \sqrt{ V_0^2 + \sum_{k=1}^{\infty} V_k^2 } \newline I_{rms} = \sqrt{ I_0^2 + \sum_{m=1}^{\infty} I_m^2 }

$$

image.png

Intro to DC-AC Converters

Power Factor

Defined as the ratio of real power to apparent power, combines the displacement and distortion factors

$$ \text{PF} = \frac{P}{V_{rms} I_{rms}} \newline \newline\text{With harmonics: }\text{PF} = \frac{V_1 I_1 \cos(\theta_x - \theta_{i1})}{V_{rms} \sqrt{I_1^2 + \sum I_k^2}} \times \cos(\theta_x - \theta_{i1}) $$

Total Harmonic Distortion