Bounce Diagrams

Voltage Reflection Coefficient

$$ \Gamma = \frac{Z_L - Z_0}{Z_L + Z_0} $$

Voltage Transmission Coefficient

$$ T = 1 + \Gamma $$

Voltage at a point on the line

$$ V(x, t) = V_0 \cdot \Gamma^n $$

image.png

Special Cases of TLs

Input impedance for short circuited line

$$ Z_{\text{in}} = j Z_0 \tan\left(\frac{\beta l}{\lambda}\right) $$

Input impedance for open-circuited line

$$ Z_{\text{in}} = -j Z_0 \cot\left(\frac{\beta l}{\lambda}\right) $$

Quarter-wave transformer

$$ Z_{\text{in}} = \frac{Z_0^2}{Z_L} $$

Standing wave ratio

$$ SWR = \frac{1 + |\Gamma|}{1 - |\Gamma|} $$

image.png

Power Flow in TLs

Power delivered to the load

$$ P_L = \frac{V_L^2}{R_L} $$

Input power with reflections

$$ P_{\text{in}} = \frac{|V_{\text{in}}|^2}{Z_0} (1 - |\Gamma|^2) $$

Reflection coefficient

$$ \Gamma = \frac{Z_L - Z_0}{Z_L + Z_0} $$

Average power absorbed by the load

$$ P_{\text{avg}} = \frac{V_{\text{in}}^2}{2 Z_0} \cdot (1 - |\Gamma|^2) $$

image.png