Surface Flux Integrals

Untitled

Fundamental Theorem for Line Integrals

Divergence/Green’s Theorem

Relates the flow/divergence of a vector field through a surface to the behaviour of the vector field inside the surface, or how much it pierces (enters/exits) the boundary

$$ \oiint_{\partial R} \vec{F} \cdot \hat n dS = \iiint_R \nabla \cdot \vec{F}dV $$

Divergence Operator

$$ \vec {\nabla} \cdot \vec{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z} $$

Stoke’s Theorem

Relates the surface integral of the curl of a vector field

$$ \iint \nabla \times \vec{F} \cdot \hat n = \oint _{c = \partial s} \vec F \cdot T ds $$

Curl Operator