Charge and Current

Untitled

Coordinate Systems

$$ \text{Cartesian to spherical coordinates: }\begin{align*} R &= \sqrt{x^2 + y^2 + z^2} \\\theta &= \tan^{-1}\left(\frac{\sqrt{x^2 + y^2}}{z}\right) \\\phi &= \tan^{-1}\left(\frac{y}{x}\right)\end{align*} \newline dV = r^2 \sin(\theta) \, dr \, d\theta \, d\phi

$$

$$ \text{Cartesian to cylindrical coordinates: } \begin{align*} r &= \sqrt{x^2 + y^2} \\ \phi &= \tan^{-1}\left(\frac{y}{x}\right) \\ z &= z \end{align*}

$$

Untitled

Untitled

Electric Field

$$ \text{Normal component: } \vec E_n = (\vec E \cdot \hat r) \hat r \newline \text{where } \hat r \text{ points radially outwards} \newline \newline \text{Tangential component: } \vec E_t= \vec E - \vec E_n $$

Untitled

Note:

Examples

Find electric field due to point charges

Untitled