Impedance Transformations

Phasor Notation of Voltage and Current on TL

Reflection Coefficient as a Function of Distance

Maximum and Minimum Voltages along the Line

$$ |\tilde{V}(z)|_{max} = |V_0^+| (1 + |\Gamma|) \newline

|\tilde{V}(z)|_{min} = |V_0^+| (1 - |\Gamma|)

$$

Input Impedance of the TL

$$ Z_{in}(z) = Z_0 \frac{1 + \Gamma_L e^{-j2\beta z}}{1 - \Gamma_L e^{-j2\beta z}} \newline Z_{in} = Z_0 \frac{Z_L + jZ_0 \tan (\beta l)}{Z_0 + j Z_L \tan (\beta l)} $$

Special Cases for Input Impedance

Normalized Impedance on a Smith Chart