These equations describe how voltage and current propagate along a TL
$$ \frac{\partial I(z, t)}{\partial z} = -G' V(z, t) - C' \frac{\partial V(z, t)}{\partial t} \newline\frac{\partial V(z, t)}{\partial z} = -R' I(z, t) - L' \frac{\partial I(z, t)}{\partial t} $$
$$ \gamma = \alpha + j\beta = \sqrt{(R' + j\omega L')(G' + j\omega C')} $$
$$ \tilde{V}(z) = V_0^+ e^{-\gamma z} + V_0^- e^{\gamma z} \newline \tilde{I}(z) = \frac{V_0^+}{Z_0} e^{-\gamma z} - \frac{V_0^-}{Z_0} e^{\gamma z} $$
For a general lossy line:
$$ Z_0 = \sqrt{\frac{R' + j\omega L'}{G' + j\omega C'}} $$
For a lossless line $R’ = 0, G’ = 0)$:
$$ Z_0 = \sqrt{\frac{L'}{C'}} $$
Speed at which phase of the wave propagates along the line
$$ v_p = \frac{\omega}{\beta} = \frac{\lambda}{T} $$