Summary of Equations

Telegrapher’s Equations

These equations describe how voltage and current propagate along a TL

$$ \frac{\partial I(z, t)}{\partial z} = -G' V(z, t) - C' \frac{\partial V(z, t)}{\partial t} \newline\frac{\partial V(z, t)}{\partial z} = -R' I(z, t) - L' \frac{\partial I(z, t)}{\partial t} $$

Complex Propagation Constant

$$ \gamma = \alpha + j\beta = \sqrt{(R' + j\omega L')(G' + j\omega C')} $$

General Solution to the Wave Equation

$$ \tilde{V}(z) = V_0^+ e^{-\gamma z} + V_0^- e^{\gamma z} \newline \tilde{I}(z) = \frac{V_0^+}{Z_0} e^{-\gamma z} - \frac{V_0^-}{Z_0} e^{\gamma z} $$

Characteristic Impedance ($Z_0$)

Phase Velocity

Wave Behaviour and Attenuation